干货 | 动力电池热管理系统组成及设计流程

时间:2018-08-23 09:08来源:未知 作者:汽车电子营 阅读:

动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。

电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。

接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊:

01动力电池热管理必要性

1、电池热量的产生

由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。

2、温度升高对电池寿命的影响

温度的升高对电池的日历寿命和循环寿命都有影响。

从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。

从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃ ,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。

因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。

02热管理系统的分类及介绍

不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:

1、直冷系统

直冷系统具有系统紧凑、重量轻以及性能好的优点。但是此系统是一个双蒸发器系统、系统没有电池制热、没有冷凝水保护、制冷剂温度不易控制且制冷剂系统寿命短。

2、低温散热器冷却系统

低温散热器冷却系统是电池的一个单独系统,由散热器、水泵和加热器组成。该冷却系统具有系统简单、成本低、低温环境下经济节能等优点。但是此系统有着冷却性能低、夏天水温高、应用受天气限制等缺点。

3、直接冷却水冷却系统

直接冷却水冷却系统具有系统紧凑、冷却性能好以及工业应用范围广等优点。但是此系统零部件比直冷多、系统复杂、燃料经济性差且压缩机负荷高。此类型的冷却系统是目前最常用的电池热管理系统之一。

4、空冷/水冷混合冷却系统

空冷/水冷混合冷却系统中有两个关键零部件:

1)水冷电池冷却器;

2)空冷电池散热器。

空冷/水冷混合冷却系统具有系统紧凑、性能好且低温环境下经济节能等优点。但是此系统复杂、成本高、控制复杂且可靠性要求高。

5、直接空气冷却系统

此系统利用驾驶舱的低温空气对电池进行冷却。

直接空气冷却系统具有系统简单、空气温度可控以及成本低等优点。但是此系统并不是对所有类型的电芯都适合,浸湿后回复慢且电池内部会有污染的风险。

03 热管理系统设计流程

1、产品开发流程

电池热管理系统的开发流程应与电池包开发流程保持一致。热管理系统的设计贯穿于整个电池包的设计过程中,在整车开发经过A样件、B样件、C样件、D样件以及最后的产品5个阶段,电池热管理参与每个阶段的设计、更改、试制以及验证。

2、热管理开发流程

设计性能良好的电池组热管理系统,要采用系统化的设计方法。电池组热管理系统设计的过程包括如下7个步骤:

04设计过程中的关键技术

1、确定电池工作最优工作温度范围

由于气候和车辆运行条件对电池影响很大,所以设计BTMS时需要确定电池组最优的工作温度范围。目前电动汽车用电池主要有铅酸电池、氢镍电池和锂离子电池。

1)铅酸电池

经研究发现,铅酸电池的寿命随温度增加线性减少,充电效率却线性增加,随着电池温度的降低充电接受能力下降,特别是0℃以下;模块间的温度梯度减少了整个电池组的容量,推荐保持电池组内温度的均匀分布和控制现有铅酸电池温度在35~40℃之间。效率和最大运行功率在-26~65℃范围内增加。

2)氢镍电池

当温度超过50℃时,电池充电效率和电池寿命都会大大衰减,在低温状态下,电池的放电能力也比正常温度小得多。下图是某80Ah氢镍电池不同温度下电池放电效率图,由图中可以看出,在温度高于40℃或者温度低于0℃时,电池的放电效率显著降低。如果仅根据这一限制,此电池的工作运行范围应该在0~40℃之间。

3)锂离子电池

与氢镍电池、铅酸电池相比,能量密度更高,导致生热更多,所以对散热要求更高。锂离子电池最佳工作温度在-20~75℃之间。

铅酸电池、氢镍电池、锂离子电池热管理的必要性取决于各自的生热率、能量效率和性能对温度的敏感性。氢镍电池在高温> 40℃)时生热最多、效率最低并且易于发生热失控事故。因此,氢镍电池很需要热管理,很多对氢镍电池进行液体冷却的努力也突出了这一点。

2、电池热场计算及温度预测

电池不是热的良导体,电池表面温度分布不能充分说明电池内部的热状态,通过数学模型计算电池内部的温度场,预测电池的热行为,对于设计电池组热管理系统是不可或缺的环节。通常使用如下公式进行计算:

式中:

a、T 是温度;

b、ρ 是平均密度;

c、Cp 是电池比热;

d、kx 、ky 、kz 分别是电池在x 、y 、z 方向上的热导率;

e、q 是单位体积生热速率。

3、电池生热率

电池充电过程中的反应生热可以分为两个阶段。

第1阶段:

没有发生过充电副反应之前,生热量主要来自: 电池化学反应生热、电池极化生热、内阻焦耳热。

第2阶段:

在发生过充电副反应之后,生热量主要来自: 电池化学反应生热、电池极化生热、过充电副反应生热、内阻焦耳热。其中大部分的生热量来自于过充电副反应生热。充电末期和过充电时,过充电副反应就开始发生。

电池放电过程中的生热量主要来自: 电池化学反应生热、电池极化生热、内阻焦耳热。需要指出的是氢镍电池放电时化学反应是吸热反应,能吸收一部分热量,所以生热问题不是很严重。

电池的内阻是影响电池生热速率的关键指标,它随着电池SOC变化,在得到电池内阻值后可以通过计算获得电池生热量,下图是某12V~80Ah氢镍电池模块在不同SOC下的内阻值。

采用专门设计的量热计可以直接测量出电池的生热量,还可以测出电池的热容量。

4、电池生热量主要因素

5、散热结构设计

电池箱内不同电池模块之间的温度差异,会加剧电池内阻和容量的不一致性,如果长时间积累,会造成部分电池过充电或者过放电,进而影响电池的寿命与性能,造成安全隐患。电池箱内电池模块的温度差异与电池组布置有很大关系,一般情况下,中间位置的电池容易积累热量,边缘的电池散热条件要好些。所以在进行电池组结构布置和散热设计时,要尽量保证电池组散热的均匀性。以空冷散热为例来,通风方式一般有串行和并行两种,如下图所示。

串行通风方式下,冷空气从左侧吹入从右侧吹出。空气在流动过程中不断地被加热,所以右侧的冷却效果比左侧要差,电池箱内电池组温度从左到右依次升高。

并行通风方式使得空气流量在电池模块间更均匀地分布。并行通风方式需要对进排气通道,电池布置位置进行很好地设计,其楔形的进排气通道使得不同模块间缝隙上下的压力差基本保持一致,确保了吹过不同电池模块的空气流量的一致性,从而保证了电池组温度场分布的一致性。

6、风机与测温点选择

在设计电池热管理系统时,希望选择的风机种类与功率、温度传感器的数量与测温点位置都恰到好处。

以空冷散热方式为例,设计散热系统时,在保证一定散热效果的情况下,应该尽量减小流动阻力,降低风机噪音和功率消耗,提高整个系统的效率。可以用实验、理论计算和流体力学CFD仿真(本案例采用FloEFD软件)的方法通过估计压降、流量来估计风机的功率消耗。当流动阻力小时,可以考虑选用轴向流动风扇;当流动阻力大时,离心式风扇比较适合。当然也要考虑到风机占用空间的大小和成本的高低。寻找最优的风机控制策略也是热管理系统的功能之一。

同侧风道流线图

异侧风道流线图

电池箱内电池组的温度分布一般是不均匀的,因此需要知道不同条件下电池组热场分布以确定危险的温度点。测温传感器数量多,有测温全面的优点,但会增加系统成本。考虑到温度传感器有可能失效,整个系统中温度传感器的数量又不能太少,至少为两个。根据不同的实际工程背景,理论上利用有限元分析、试验中利用红外热成像或者实时的多点温度监控的方法可以分析和测量电池组、电池模块和电池单体的热场分布,决定测温点的个数,找到不同区域合适的测温点。一般的设计应该保证温度传感器不被冷却风吹到,以提高温度测量的准确性和稳定性。在设计电池时,要考虑到预留测温传感器空间,比如可以在适当位置设计合适的孔穴。

05热管理系统性能评估

仿真是电池热管理系统最有效的评估手段之一。根据目前已有的风冷和水冷项目经验,仿真可以完成如下工作:

1)水冷系统冷却板的压降计算以及冷却水流动一致性计算;

2)电池包热性能评估计算;

3)空气冷却系统优化计算。

1、散热型电池包热管理案例

以下为某混合动力汽车建立的整车热管理,其中包含电池包热管理模型、乘员舱模型、发动机冷却、HVAC、油冷系统和电机冷却系统FloMASTER软件(软件原名称Flowmaster)仿真模型,其中针对电池冷却系统,开展了一系列的设计仿真工作。

针对电池包,建立了电芯模型和冷却模型,考虑了电芯的热容、热阻和热桥,对冷却和加热过程进行了研究,得到了满足冷却温度要求(电芯不超过40℃)的水流量和在规定的30分钟内升温30℃的加热功率,以及加热过程中各电芯的温度均匀性及滞后性能。

2、直接空气冷却型电池包

该案例为三菱欧兰德车型的热管理仿真,得到了不同气象条件及整个测试循环工况下蒸发器出口的冷风状态及电芯温度。

3、空/水混合冷却型电池包

以下模型为空/水混合冷却型电池热管理及整车热管理模型,并对该系统进行了不同季节、不同车况的热管理仿真,并结合控制策略,研究了不同档位的采暖和电池加热工况以及纯加热工况,对系统设计及控制策略优化提供了重要依据。

最后小编想说电池的温度直接影响了电池的安全性,因此电池的热管理系统设计研究是电池系统设计中最关键的工作之一。必须严格按照电池的热管理设计流程、电池的热管理系统及零部件类型、热管理系统的零部件选型及热管理系统的性能评估等多个方面来进行电池系统热管理的设计和验证,才能保证电池的性能和安全性。

汽车热管理系统目前有哪些技术难点呢?

难点是很多的。

热管理是一个整合的概念,如果分解到细枝末节,会是一个非常庞大的课题。

目前来说,整车热管理的出发点更多偏向于“各个零部件没有热害风险”,并不是这个出发点技术含量低,站在一个比较低的技术位置。事实上,因为每个整车项目的背后,都会有不一样的期望,所以总布置也好,每个零部件的性能、成本也好,总是不一样的。比如悬置和催化器之间的距离,这个项目是20mm,那个项目可能就是30mm,那么悬置的热害情况就有比较大的区别,也许这个项目解决了这个问题,可是其他的零部件空间受到限制,反而因此压缩了安全裕度,都是有的。此消彼长,整车上的很多矛盾,最后无非都是一个折中的方案,至于如何折中,就是很大的学问了。

但是今天的整车热管理开始提升到“能量管理”的层面。为了避免洪水,是不是要把大坝建到几百米高?为了避免洪荒,是不是家里要屯上几吨大米?答案都是否定的。在避免热害的过程当中,我们也会更倾向于不要浪费无谓的能量。这里包括几个方面的内容:

1.恶劣工况下,整车没有热害风险;

2.低负荷工况下,水泵、风扇降低功耗,避免浪费;

3.暖车过程避免能量耗散,改善排放,部分负荷工况适当提高发动机壁温,改善热效率。

这三点的关系是递进的。此外,就是乘客对空调的需求,关于暖风的控制。

要依次考虑到这几个方面的内容时,就会涉及到很多具体的问题。

如果只要解决热害风险,就使用功率更高、性能更好的风扇、水泵、散热器;担心过热的零部件,或者本身是热源担心造成其他地方过热的零部件,比如上述的催化器和悬置,考虑增加隔热罩,或者使用耐热材料,或者使用辅助的循环水路散热,比如增压器&EGR的独立辅助水泵,等等。

如果要避免无谓的功耗,就需要对设计有很好的把握,各个零部件的性能不高不低,恰到好处,此外标定数据又做的很好,风扇能不开就不开。

如果要快速热车,降低排放,提高热效率,就需要更高的自由度,比如需求可调速电子风扇,电子水泵,电子调温器等等,这些技术的背后,是更复杂的控制逻辑以及更复杂的标定手艺。控制逻辑还会涉及到一些参数的计算方法,传感器由于适用条件以及测量精度而需求的选型等等。

如果在这些基础上还要兼顾暖风,保证乘客对环境温度感知足够的舒适,那么冷却系统的方案如何,水路的走向如何,每一路水分别有多少流量,阻力多少等等,又是另外一个话题了,更深一步的,整车行驶时,由于工况变化导致水泵工作变化,导致流量变化,导致暖风变化,导致车内空调出风温度的变化等等,都是需要调校的工作。

那么,如果在一个非常高温的环境下,整车已经有很高的过热风险,还要用多余的流量去满足空调吗?如果在一个非常低温的环境下,打开空调还有必要打开散热器风扇吗?如果这些答案都是已知的,那么这些极端的工况如何定义?如果零部件的设计已经无法改动,那么可不可以通过降低发动机的输出功率来挽回?

这句话的背后是最痛苦的,以及所有问题的根源……标定哈哈哈哈哈哈。

所以汽车热管理,问题和技术难点非常之多,但如果要用一句话来概括,就一定是“多个零部件之间的关联性”, 因为在整车的开发过程里,每个零部件经常是独立而分裂的,特别在缺乏经验的主机厂里这个现象特别常见,往往难以考虑到可能影响自己,可能被自己影响的其他零部件的情况,而负责做整车热管理的小组,又很难了解到每个零部件的详细情况。

试图在千百个零部件里,得到一个最优解,本身就是一个非常难的问题。

其他的,这个课题分解到细枝末节,有多详细,详细到每一个子问题时,有没有能力去解决,有哪些是可以牺牲的,有哪些是需要改进的,在有限的开发周期里,有什么样的方案可以选择,有什么样的方案可以做到,有哪些更新的技术可以使用,而这些新技术会带来多少新的工作量,都需要项目组抉择。

至于仿真也好,试验也好,都是一样的。确实精度的要求,边界的设置,环境的受限,试验的条件,都难,但这两者,最终都是分析和验证的方法而已。

只要想得到的都不难,难的是一些难以想象的事情。

织梦二维码生成器
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
用户名: 验证码:点击我更换图片
相关阅读

友情链接

技术

产品

软件/工具

供应商

© 2018 汽车电子营 沪ICP备14012069号-1 Power by DedeCms